已知向量a,b满足|a|=|b|=1,实数m,n满足m^2+n^2=1.则|ma+nb|的取值范围是 答案是(0,根号2)
问题描述:
已知向量a,b满足|a|=|b|=1,实数m,n满足m^2+n^2=1.则|ma+nb|的取值范围是 答案是(0,根号2)
答
把它平方:得到,1+2mnab.m^2+n^2=1,所以,mn最小值1(基本不等式)当a,b 一负一正时,取到最小值0,当a,b同号时取最大值2,再开根号=根号2