已知向量a,b满足|a|=|b|=1,实数m,n满足m^2+n^2=1.则|ma+nb|的取值范围是|ma+nb|≤|ma|+|nb|≤√2(m^2+n^2)
问题描述:
已知向量a,b满足|a|=|b|=1,实数m,n满足m^2+n^2=1.则|ma+nb|的取值范围是
|ma+nb|≤|ma|+|nb|≤√2(m^2+n^2)
答
m=sina n=cosa ,这样应该会了吧
答
|ma+nb|