如图,棱锥S-ABC中,棱SA,SB,SC两两垂直,且SA=SB=SC,则二面角A-BC-S大小的正切值为_.

问题描述:

如图,棱锥S-ABC中,棱SA,SB,SC两两垂直,且SA=SB=SC,则二面角A-BC-S大小的正切值为______.

如图所示,不妨设SA=2.则SB=SC=SA=2.∵SC⊥SB,BC=SC2+SB2=2.取BC的中点,连接SD,AD.则SD=12BC=1,SD⊥BC.∵SA⊥SB,SA⊥SC,SB∩SC=S.∴SA⊥平面SBC.∴BC⊥SD.∴∠SDA是二面角A-BC-S的平面角.在Rt△SAD...