设Sn是正项数列【an】的前n项和,4Sn=an^2+2an-3.an=2n+1,已知bn=2^n.求Tn=a1b1+a2b2+…+anbn
问题描述:
设Sn是正项数列【an】的前n项和,4Sn=an^2+2an-3.an=2n+1,已知bn=2^n.求Tn=a1b1+a2b2+…+anbn
答
Tn=3*2^1+5*2^2+7*2^3+++++(2n-1)2^(n-1)+(2n+1)2^n
2Tn=3*2^2+5*2^3+7*2^4+++++(2n-1)2^n+(2n+1)2^(n+1)
-Tn=3*2^1+2*2^2+2*2^3+++++2*2^n-(2n+1)2^(n+1)=-n2^(n+2) 所以Tn=n2^(n+2)