设函数f(x)=ax+2,g(x)=a2x2-lnx+2,其中a∈R,x>0.是否存在负数a,使f(x)≤g(x)对一切正数x都成立?若存在,求出a的取值范围;若不存在,请说明理由.

问题描述:

设函数f(x)=ax+2,g(x)=a2x2-lnx+2,其中a∈R,x>0.是否存在负数a,使f(x)≤g(x)对一切正数x都成立?若存在,求出a的取值范围;若不存在,请说明理由.

设函数h(x)=f(x)-g(x)=ax+lnx-a2x2(x>0)
假设存在负数a,使得f(x)≤g(x)对一切正数x都成立.
即:当x>0时,h(x)的最大值小于等于零.
h′(x)=a+

1
x
−2a2x=
−2a2x2+ax+1
x
(x>0)(9分)
令h′(x)=0可得:x2=−
1
2a
x1
1
a
(舍)(11分)
0<x<−
1
2a
时,h′(x)>0,h(x)单增;
x>−
1
2a
时,h′(x)<0,h(x)单减,
所以h(x)在x=−
1
2a
处有极大值,也是最大值.
h(x)max=h(−
1
2a
)≤0
解得:a≤−
1
2
e
3
4
(13分)
所以负数a存在,它的取值范围为a≤−
1
2
e
3
4
(14分)