过双曲线x2a2-y2b2=1(a>0,b>0)的一个焦点F作一条渐线的垂线,垂足为点A,与另一条渐近线交于点B,若FB=2FA,则此双曲线的离心率为(  ) A.2 B.3 C.2 D.5

问题描述:

过双曲线

x2
a2
-
y2
b2
=1(a>0,b>0)的一个焦点F作一条渐线的垂线,垂足为点A,与另一条渐近线交于点B,若
FB
=2
FA
,则此双曲线的离心率为(  )
A.
2

B.
3

C. 2
D.
5

如图因为

FB
=2
FA
,所以A为线段FB的中点,
∴∠2=∠4,又∠1=∠3,∠2+∠3=90°,所以∠1=∠2+∠4=2∠2=∠3.
故∠2+∠3=90°=3∠2⇒∠2=30°⇒∠1=60°⇒
b
a
=
3

e2=1+(
b
a
)
2
=4⇒e=2.
故选:C.