已知空间四边形ABCD中,AB≠AC,AE是△ABC的BC边上的高,DF是△BCD的BC边上的中线,求证:AE和DF是异面直线.
问题描述:
已知空间四边形ABCD中,AB≠AC,AE是△ABC的BC边上的高,DF是△BCD的BC边上的中线,求证:AE和DF是异面直线.
已知空间四边形ABCD中,AB≠AC,AE是△ABC的BC边上的高,DF是△BCD的BC边上的中线,求证:AE和DF是异面直线.
答对得分
答
用反正法解这类题,方法就是假设和求证相反,然后根据假设推出和已知条件的矛盾,然后就可以了!就拿这个题给你解解看:证明:假设AE、DF在同一平面上.根据异面相交与一条直线的原理就可以知道:面AEFD与面BCD应该交与一...