Q如图,在三角形ABC中 角ABC=45°CD垂直AB,BE垂直AC,垂足分别是D,E.F为BC中点,BE于DF,DC分别交于点G,H

问题描述:

Q如图,在三角形ABC中 角ABC=45°CD垂直AB,BE垂直AC,垂足分别是D,E.F为BC中点,BE于DF,DC分别交于点G,H
(1)求证BH=AC
(2)求证BG的平方-GE的平方=CE的平方

证明:(1)∵∠BDC=∠BEC=∠CDA=90°,∠ABC=45°,
∴∠BCD=45°=∠ABC,∠A+∠DCA=90°,∠A+∠ABE=90°,
∴DB=DC,∠ABE=∠DCA,
∵在△DBH和△DCA中
∠BDH=∠CDA BD=CD ∠HBD=∠ACD ,
∴△DBH≌△DCA,
∴BH=AC.
(2)连接CG,
∵F为BC的中点,DB=DC,
∴DF垂直平分BC,
∴BG=CG,
∵∠ABE=∠CBE,BE⊥AC,
∴∠AEB=∠CEB,
在△ABE和△CBE中
∵ ∠AEB=∠CEB BE=BE ∠CBE=∠ABE ,
∴△ABE≌△CBE,
∴EC=EA,
在Rt△CGE中,由勾股定理得:BG的平方-GE的平方=EA的平方