如图,在△ABC中,AD是BC边上的中线,以D为顶点作∠EDF=90°,DE、DF分别交AB、AC于E、F,且BE2+CF2=EF2,求证:△ABC为直角三角形.

问题描述:

如图,在△ABC中,AD是BC边上的中线,以D为顶点作∠EDF=90°,DE、DF分别交AB、AC于E、F,且BE2+CF2=EF2,求证:△ABC为直角三角形.

证明:延长FD到点G,使DG=DF,连接BG,∵D是BC的中点,∴BD=CD,在△CDF和△BDG中,CD=BD∠FDC=∠BDGDF=DG,∴△CDF≌△BDG(SAS),∴∠C=∠DBG,CF=BG,∴CF∥BG,∵DF=DG,ED⊥FD,∴EF=EG,∵BE2+CF2=EF2,∴...