设参数方程x=2t^3+2,y=e^2t 确定函数x=x(y),求dx/dy,d^2x/dy^2
问题描述:
设参数方程x=2t^3+2,y=e^2t 确定函数x=x(y),求dx/dy,d^2x/dy^2
答
dx/dt=6t^2,dy/dt=2e^2t
x'=dx/dy=6t^2/(2e^2t)=3t^2e^(-2t)
dx'/dt=e^(-2t)(6t-6t^2)
x"=e^(-4t)(3t-3t^2)