奇函数f(x)在R上为减函数,若对任意的实数x,不等式f(kx)+f(-x2+x-2)>0恒成立,则实数k的取值范围为_.
问题描述:
奇函数f(x)在R上为减函数,若对任意的实数x,不等式f(kx)+f(-x2+x-2)>0恒成立,则实数k的取值范围为______.
答
∵奇函数f(x)在R上为减函数,
若对任意的x∈(0,1],不等式f(kx)+f(-x2+x-2)>0恒成立,
∴f(kx)>-f(-x2+x-2)
∴f(kx)>f(x2-x+2)
∴kx<x2-x+2
∴x2-(1+k)x+2>0,
∵y=x2-(1+k)x+2开口向上,
∴要使x2-(1+k)x+2>0恒成立,
只需△=[-(1+k)]2-8<0,
整理,得k2+2k-7<0,
解得-2
-1<k<2
2
-1.
2
∴实数k的取值范围是(−2
−1,2
2
−1).
2
故答案为:(−2
−1,2
2
−1).
2