如图,在直三棱柱ABC-A1B1C1中,AB1⊥BC1,AB=CC1=1,BC=2. (1)求证:A1C1⊥AB; (2)求点B1到平面ABC1的距离.

问题描述:

如图,在直三棱柱ABC-A1B1C1中,AB1⊥BC1,AB=CC1=1,BC=2.

(1)求证:A1C1⊥AB;
(2)求点B1到平面ABC1的距离.

(1)证明:连接A1B,则A1B⊥AB1
又∵AB1⊥BC1
∴AB1⊥平面A1BC1
∴AB1⊥A1C1
又∵A1C1⊥BB1
∴A1C1⊥平面ABB1
∴A1C1⊥AB.
(2)由(1)知AB⊥AC,∵AB⊥AC1
又∵AB=1,BC=2,
∴AC=

3
,AC1=2.
S△ABC1=1.
设所求距离为d,
VB1−ABC1VC1−ABB1
1
3
SABC1•d=
1
3
S△ABB1
•A1C1
1
3
•1•d=
1
3
1
2
3

∴d=
3
2
.点B1到平面ABC1的距离d=
3
2