如图,正三棱柱ABC-A1B1C1中,底面边长为2,侧棱长为2,D为A1C1中点. (Ⅰ)求证;BC1∥平面AB1D; (Ⅱ)三棱锥B-AB1D的体积.

问题描述:

如图,正三棱柱ABC-A1B1C1中,底面边长为2,侧棱长为

2
,D为A1C1中点.

(Ⅰ)求证;BC1∥平面AB1D;
(Ⅱ)三棱锥B-AB1D的体积.

(Ⅰ)连结A1B与AB1交于E,连结DE,则E为A1B的中点,故DE为△A1BC1的中位线,∴BC1∥DE.
又DE⊂平面AB1D,BC1⊄平面AB1D,∴BC1∥平面AB1D.(6分)
(Ⅱ)过点D作DH⊥A1B1,∵正三棱柱ABC-A1B1C1,∴AA1⊥平面A1B1C1,AA1⊥DH,AA1∩A1B1=A1
∴DH⊥平面ABB1A1.DH为三棱锥D-ABB1的高.(8分)
S△ABB1=

1
2
•AB•BB1=
2
MH=
1
2
A1B1=
2
,(10分)
DH=A1Dtan
π
3
=
3
2

VB-AB1D=VD-ABB1=
1
3
×
3
2
×
2
=
6
6
.(12分)