函数y=2sinx+2cos(x+π4)的最大值为(  ) A.6 B.2 C.2+2 D.10

问题描述:

函数y=2sinx+

2
cos(x+
π
4
)的最大值为(  )
A.
6

B.
2

C. 2+
2

D.
10

由题意得,y=2sinx+

2
cos(x+
π
4

=2sinx+
2
(cosxcos
π
4
-sinxsin
π
4

=2sinx+cosx-sinx=sinx+cosx=
2
sin(x+
π
4
)

sin(x+
π
4
)
=1时,函数y取到最大值是
2

故选:B.