数列{an}的前n项和为Sn,若对于任意的正整数n都有Sn=2an-3n.(1)设bn=an+3,求证:数列{bn}是等比数列,并求出{an}的通项公式;(2)求数列{nan}的前n项和.
问题描述:
数列{an}的前n项和为Sn,若对于任意的正整数n都有Sn=2an-3n.
(1)设bn=an+3,求证:数列{bn}是等比数列,并求出{an}的通项公式;
(2)求数列{nan}的前n项和.
答
(1)∵Sn=2an-3n,对于任意的正整数都成立,∴Sn+1=2an+1-3n-3,两式相减,得a n+1=2an+1-2an-3,即an+1=2an+3,∴an+1+3=2(an+3),所以数列{bn}是以2为公比的等比数列,由已知条件得:S1=2a1-3,a1=3.∴首项b1=...