已知三角形的面积为S=1/2(a+b+c)r,其中a,b,c为三角形边长,r为内切圆半径,用类比推理写出四面体的体积公式.

问题描述:

已知三角形的面积为S=1/2(a+b+c)r,其中a,b,c为三角形边长,r为内切圆半径,用类比推理写出四面体的体积公式.

这个三角形面积公式是根据三角形的内切圆得到的,即由于内心到三角形三边的距离都是r,且内心分此三角形成边长分别为a、b、c高都是r的三个三角形,其面积就是S=(a+b+c)/2×r.类似地,在空间四面体中,作出其内切球,内切...