几道立体几何题1正方体ABCD-A1B1C1D1八个顶点在球O表面上,且球O体积为4根号3π,求四棱锥O-ABCD的体积2已知三棱锥S-ABC的各顶点都在一个半径为r的球面上,球心O在AB上,SO⊥面ABC,AC=(根号2)r,则球的体积与三棱锥体积之比是3已知长方体ABCD-A1B1C1D1内接于球O,底面ABCD是边长为2的正方形,E为AA1的中点,OA垂直平面BDE,则球O面积为全部画图

问题描述:

几道立体几何题
1正方体ABCD-A1B1C1D1八个顶点在球O表面上,且球O体积为4根号3π,求四棱锥O-ABCD的体积
2已知三棱锥S-ABC的各顶点都在一个半径为r的球面上,球心O在AB上,SO⊥面ABC,AC=(根号2)r,则球的体积与三棱锥体积之比是
3已知长方体ABCD-A1B1C1D1内接于球O,底面ABCD是边长为2的正方形,E为AA1的中点,OA垂直平面BDE,则球O面积为
全部画图

1V球=4π/3*R³=4√3π ==>R³=3√3==>R=√3正方体ABCD-A1B1C1D1八个顶点在球O表面上∴正方体的体对角线AC1=2√3  ∴棱长AB=2四棱锥O-ABCD的高即球心O到ABCD的距离为1∴VO-ABCD=1/3*...