数列{an}中,a3=1,a1+a2+…+an=an+1(n=1,2,3…). (Ⅰ)求a1,a2; (Ⅱ)求数列{an}的前n项和Sn;
问题描述:
数列{an}中,a3=1,a1+a2+…+an=an+1(n=1,2,3…).
(Ⅰ)求a1,a2;
(Ⅱ)求数列{an}的前n项和Sn;
答
(Ⅰ)∵a1=a2,a1+a2=a3,
∴2a1=a3=1,
∴a1=
,a2=1 2
.1 2
(Ⅱ)∵Sn=an+1=Sn+1-Sn,∴2Sn=Sn+1,
=2,Sn+1 Sn
∴{Sn}是首项为S1=a1=
,公比为2的等比数列.1 2
∴Sn=
•2n-1=2n-2.1 2