数列{an}中,a3=1,a1+a2+…+an=an+1(n=1,2,3…). (Ⅰ)求a1,a2; (Ⅱ)求数列{an}的前n项和Sn;

问题描述:

数列{an}中,a3=1,a1+a2+…+an=an+1(n=1,2,3…).
(Ⅰ)求a1,a2
(Ⅱ)求数列{an}的前n项和Sn

(Ⅰ)∵a1=a2,a1+a2=a3
∴2a1=a3=1,
∴a1=

1
2
,a2=
1
2

(Ⅱ)∵Sn=an+1=Sn+1-Sn,∴2Sn=Sn+1
Sn+1
Sn
=2,
∴{Sn}是首项为S1a1
1
2
,公比为2的等比数列.
∴Sn=
1
2
2n-1=2n-2