两组邻边分别相等的四边形我们称它为筝形. 如图,在筝形ABCD中,AB=AD,BC=DC,AC,BD相交于点O, (1)求证:①△ABC≌△ADC;②OB=OD,AC⊥BD; (2)如果AC=6,BD=4,求筝形ABCD的面积.

问题描述:

两组邻边分别相等的四边形我们称它为筝形.
如图,在筝形ABCD中,AB=AD,BC=DC,AC,BD相交于点O,

(1)求证:①△ABC≌△ADC;②OB=OD,AC⊥BD;
(2)如果AC=6,BD=4,求筝形ABCD的面积.

(1)证明:①在△ABC和△ADC中,AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC.②∵△ABC≌△ADC,∴∠BAO=∠DAO.∵AB=AD,OA=OA,∴△ABO≌△ADO.∴OB=OD,AC⊥BD.(2)筝形ABCD的面积=△ABC的面积+△ACD的面积=12×AC...