两组邻边分别相等的四边形我们称它为筝形. 如图,在筝形ABCD中,AB=AD,BC=DC,AC,BD相交于点O, (1)求证:①△ABC≌△ADC;②OB=OD,AC⊥BD; (2)如果AC=6,BD=4,求筝形ABCD的面积.
问题描述:
两组邻边分别相等的四边形我们称它为筝形.
如图,在筝形ABCD中,AB=AD,BC=DC,AC,BD相交于点O,
(1)求证:①△ABC≌△ADC;②OB=OD,AC⊥BD;
(2)如果AC=6,BD=4,求筝形ABCD的面积.
答
(1)证明:①在△ABC和△ADC中,
AB=AD,BC=DC,AC=AC,
∴△ABC≌△ADC.
②∵△ABC≌△ADC,
∴∠BAO=∠DAO.
∵AB=AD,OA=OA,
∴△ABO≌△ADO.
∴OB=OD,AC⊥BD.
(2)筝形ABCD的面积=△ABC的面积+△ACD的面积
=
×AC×BO+1 2
×AC×DO,1 2
=
×AC×(BO+DO),1 2
=
×AC×BD,1 2
=
×6×4,1 2
=12.