设函数f(x)=(sinωx+cosωx)^+2cos^wx(w>0)的最小正周期为2π/3.求ω的值;若函数y=g(x)的图像是由y=f(x)
问题描述:
设函数f(x)=(sinωx+cosωx)^+2cos^wx(w>0)的最小正周期为2π/3.求ω的值;若函数y=g(x)的图像是由y=f(x)
答
fx=sin^wx+cos^wx+2sinwxcoswx+2*(1+cos2wx)/2
=1+sin2wx+cos2wx+1
=sqrt(2)Sin(2wx+π/2)+2
因为T=2π/w,所以2π/2w=2π/3,所以π=3/2