已知函数f(x)=sin(2wx-π/6)+1/2的最小周期为π,求w的值,求函数f(x)在区间[0,2π/3]上的取值范围
问题描述:
已知函数f(x)=sin(2wx-π/6)+1/2的最小周期为π,求w的值,求函数f(x)在区间[0,2π/3]上的取值范围
答
由题意得:
π=2π/(2w)
解得:w=1
f(x)=sin(2x-π/2)+1/2
x∈[0,2π/2]
∴-π/6