已知椭圆C的中心为坐标原点O,焦点在X轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A,B两点,向量OA+OB与向量a=(3,-1)共线.
问题描述:
已知椭圆C的中心为坐标原点O,焦点在X轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A,B两点,向量OA+OB与向量a=(3,-1)共线.
(1)求椭圆离心率e
(2)设M为椭圆上任意一点,且向量OM=λOA+μOB,(λ,μ∈R,注意OA,OB均为向量),证明:λ^2+μ^2为定值.
答
1)设椭圆方程为x^2/a^2+y^2/b^2=1,直线AB:y=x-c,联立消去y可得: (a^2+b^2)x^2-2a^2cx+a^2c^2-a^2b^2=0,令A=(x1,y1),B=(x2,y2),则x1+x2=(2a^2*c)/(a^2+b^2) ,x1*x2=(a^2*c^2-a^2*b^2)/(a^2+b^2),向量OA+ OB=(x1+x2...