F椭圆C:x2+y2/2=1在y轴正半轴上的焦点,过F且斜率为负根号2的直线l与c交AB两点,点P满足OA+OB+OP=0向量和

问题描述:

F椭圆C:x2+y2/2=1在y轴正半轴上的焦点,过F且斜率为负根号2的直线l与c交AB两点,点P满足OA+OB+OP=0向量和
1)证明点P在C上
(2)设点P关于点O的对称点为Q,证明A,P,B,Q四点在同一圆上

(1)对椭圆C:x2+y2/2=1,c²=a²-b²=2-1=1,∴c=1,焦点为F(0,1)过焦点斜率为-√2的直线为:y=-√2x+1代入椭圆方程得 x²+(-√2x+1)²/2=1,整理得 4x²-2√2x-1=0设交点为A(x1,y1...