在三角形ABC中,cos²(B/2)=(a+c)/2c (a,b,c分别为角A,B,C的对边),则三角形ABC的形状为
问题描述:
在三角形ABC中,cos²(B/2)=(a+c)/2c (a,b,c分别为角A,B,C的对边),则三角形ABC的形状为
答
cos²(B/2)=(1+cosB)/2=(a+c)/2c
1+(a²+c²-b²)/2ac=(a+c)/c
两边乘2ac
2ac+a²+c²-b²=2a²+2ac
c²-b²=a²
所以是直角三角形