已知正方体ABCD-A'B'C'D'中,E,F,G分别是CB、CD、CC'的中点,求证:平面AA'C⊥平面EFG

问题描述:

已知正方体ABCD-A'B'C'D'中,E,F,G分别是CB、CD、CC'的中点,求证:平面AA'C⊥平面EFG

在正方体ABCD-A1B1C1D1中有AA1⊥平面ABCD,
∵EF⊂平面ABCD∴AA1⊥EF
∵ABCD为正方形
∴AC⊥BD
∵EF∥BD∴AC⊥EF.
又因为AA1∩AC=A,
所以EF⊥平面AA1C.
∵EF⊂平面EFG
∴平面AA1C⊥面EFG.