设坐标原点为O,抛物线y2=4x与过点(m,0)的直线交于A、B两点,若OA•OB=−3,则m的值为_.
问题描述:
设坐标原点为O,抛物线y2=4x与过点(m,0)的直线交于A、B两点,若
•OA
=−3,则m的值为______. OB
答
因为直线与抛物线y2=4x交于A、B两点,
所以直线的斜率不等于0,
所以设直线的方程为:x=ty+m,
设A、B两点的坐标分别为(x1,y1)和(x2,y2 ),
所以
=(x1,y1),OA
=(x2,y2 ),OB
所以
•OA
=(x1,y1)•(x2,y2 )=x1•x2+y1•y2=(1+t2)y1•y2+tm(y1+y2)+m2=-3,①OB
联立直线与抛物线的方程
,
y2=4x x=ty+m
代入整理可得:y2-4ty-4m=0,
所以△=16(t2+m)>0,y1+y2=4t,y1•y2=-4m,
所以代入①可得:m2-4m+3=0,
解得:m=1或者m=3,代入△可得符合题意.
故答案为:1或3.