1、设双曲线x^2/9-y^2/16=1的右顶点为A,右焦点为F,过点F平行双曲线的一条渐近线的直线与双曲线交于点B,求三角形AFB的面积.

问题描述:

1、设双曲线x^2/9-y^2/16=1的右顶点为A,右焦点为F,过点F平行双曲线的一条渐近线的直线与双曲线交于点B,求三角形AFB的面积.
2、对称轴都在坐标轴上,等轴双曲线,一个焦点是F1(-6,0)
求双曲线方程

1、渐近线方程为:y=±4x/3,设右焦点坐标F(c,0),c=√(a^2+b^2)=5,过点F平行双曲线的一条渐近线的直线斜率=±4/3,y=±4/3(x-5),代入双曲线方程,解出B点坐标 ,x^2/9-1/16*16/9(x-5)^2=1,x=17/5,y=4/3(17/5-5),y=-32/1...