在三角形ABC中,AC=BC,在三角形ABC中,AC=BC,

问题描述:

在三角形ABC中,AC=BC,
在三角形ABC中,AC=BC,

解题如下:
延长AC、BE相交于F点,(现在证明△ACD ≌△BCF即可)
∵AD平分∠CAB且AE⊥BE于E
∴△FAB中,E为BF的中点,BE=EF=1/2BF
又在RT△AEF和RT△BCF中,∠AFE=∠BFC,
∴RT△AEF∽RT△BCF,∠EAF=∠CBF,即∠CAD=∠CBF
又AC=BC,
∴RT△ACD≌RT△BCF,AD=BF
∴BE=1/2BF=1/2AD,即AD=2BE
证毕。

∠BFC+∠DAC=90°,∠BFC+∠CBF=90°
∠DAC=∠CBF
在⊿BCF,⊿ACD中
∠DAC=∠CBF,AC=BC,∠ACD=∠BCF=90°
∴AD=BF
在⊿AEF,⊿ABF中
∵∠AEF=∠AEB=90°,AE=AE,∠EAF=∠EAB
∴EF=BE
∴AD=BF=2BE
∴BE=1/2AD

延长BE交AC的延长线于F∵∠BFC+∠DAC=90°,∠BFC+∠CBF=90°∴∠DAC=∠CBF在⊿BCF,⊿ACD中∠DAC=∠CBF,AC=BC,∠ACD=∠BCF=90°∴⊿BCF≌⊿ACD∴AD=BF在⊿AEF,⊿ABF中∵∠AEF=∠AEB=90°,AE=AE,∠EAF=∠EAB∴⊿AEF≌...