如图,在Rt△ABC中,CD是斜边AB上的高,点M在CD上,DH⊥BM且与AC的延长线交于点E.求证: (1)△AED∽△CBM; (2)AE•CM=AC•CD.
问题描述:
如图,在Rt△ABC中,CD是斜边AB上的高,点M在CD上,DH⊥BM且与AC的延长线交于点E.求证:
(1)△AED∽△CBM;
(2)AE•CM=AC•CD.
答
证明:(1)∵△ABC是直角三角形,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠CDB=90°,即∠MCB+∠ABC=90°,∴∠A=∠MCB,∵CD⊥AB,∴∠2+∠DMB=90°,∵DH⊥BM,∴∠1+∠DMB=90°,∴∠1=∠2,又∵∠ADE=90°+∠1,∠CMB=...