数列{An}满足A1=1/2,A1+A2+...+An=n^2*An,用数学归纳法证明An=1/[n(n+1)]

问题描述:

数列{An}满足A1=1/2,A1+A2+...+An=n^2*An,用数学归纳法证明An=1/[n(n+1)]

当n=1时,A1=1/2An=1/(1×2)=1/2原式成立设当n=k时,Ak=1/(k(k+1))则n=k+1时A1+A2+……+Ak+A(k+1)=(k+1)^2×A(k+1)又∵A1+A2+……+Ak=k^2×Ak=k^2×1/(k(k+1))=k/(k+1)两式相减A(k+1)=(k+1)^2×A(k+1)-k/(k+1)(k^2+2k)...