△ABC中,若a4+b4+c4=2c2(a2+b2),则角C的度数是( ) A.60° B.45°或135° C.120° D.30°
问题描述:
△ABC中,若a4+b4+c4=2c2(a2+b2),则角C的度数是( )
A. 60°
B. 45°或135°
C. 120°
D. 30°
答
∵a4+b4+c4=2c2(a2+b2),∴(a2+b2)2-2c2(a2+b2)+c4-2a2b2=0,∴(a2+b2-c2)2-2a2b2=0,∴(a2+b2-c2+2ab)(a2+b2-c2-2ab)=0∴a2+b2-c2+2ab=0或a2+b2-c2-2ab=0∵cosC=a2+b2−c22ab,∴cosC=-22或22,∵0°<...