(物理--选修3-5)在光滑的水平面上,质量为m1的小球A以速率v0向右运动.在小球A的前方O点处有一质量为m2的小球B处于静止状态,如图所示.小球A与小球B发生正碰后小球A与小球B均向右运动.小球B被在Q点处的墙壁弹回后与小球A在P点相遇,PQ=1.5PO.假设小球间的碰撞及小球与墙壁之间的碰撞都是弹性碰撞,求两小球的质量之比m1m2.
问题描述:
(物理--选修3-5)在光滑的水平面上,质量为m1的小球A以速率v0向右运动.在小球A的前方O点处有一质量为m2的小球B处于静止状态,如图所示.小球A与小球B发生正碰后小球A与小球B均向右运动.小球B被在Q点处的墙壁弹回后与小球A在P点相遇,PQ=1.5PO.假设小球间的碰撞及小球与墙壁之间的碰撞都是弹性碰撞,求两小球的质量之比
.m1 m2
答
从两小球碰撞后到它们再次相遇,小球A和小球B的速度大小保持不变,设两小球通过的路程分别为s1、s2.
由v=
s t
得:
=v1 v2
1 4
两小球碰撞过程有:m1v0=m1v1+m2v2
m1v02=1 2
m1v12+1 2
m2v22 1 2
解得:
=2.m1 m2
故两小球的质量之比
=2.m1 m2
答案解析:根据碰后再次相遇的路程关系,求出小球碰后的速度大小之比,根据碰撞过程中动量、能量守恒列方程即可求出两球的质量之比.
考试点:动量守恒定律;匀变速直线运动的位移与时间的关系;机械能守恒定律.
知识点:解答本题的突破口是根据碰后路程关系求出碰后的速度大小之比,本题很好的将直线运动问题与动量守恒和功能关系联系起来,比较全面的考查了基础知识.