数列an是等差数列,Sn是它的前n项和,且a3=5,S3=9,(1) 求首项a1和公差d及Sn(2) 若存在数列bn使得a1b1+a2b2+……+anbn=5+(2n-3)2^(n-1),对任意正整数n都成立,求数列bn的钱n项和An

问题描述:

数列an是等差数列,Sn是它的前n项和,且a3=5,S3=9,
(1) 求首项a1和公差d及Sn
(2) 若存在数列bn使得a1b1+a2b2+……+anbn=5+(2n-3)2^(n-1),对任意正整数n都成立,求数列bn的钱n项和An

(1)
S2=S3-a3=4
S1=S2-a2=4-(a1+d)=a1 =>2a1+d=4
a3=a1+2d=5
=>a1=1 d=2 an=1+2(n-1)=2n-1 Sn=n^2
(2)
an=2n-1
a1b1+a2b2+……+anbn=5+(2n-3)2^(n-1) (a)
n=1 =>a1b1=4 =>b1=4
n=2 =>a1b1+a2b2=7 =>b2=1
n=3 =>a1b1+a2b2+a3b3=17 =>b3=2
a1b1+a2b2+……+anbn+a(n+1)b(n+1)=5+[2(n+1)-3]2^n(b)
(b)-(a)=a(n+1)b(n+1)=2^n[(2n-1)-(2n-3)/2]=2^n*(n+1/2)
a(n+1)=2n+1
=>b(n+1)=2^n*(n+1/2)/(2n+1)=2^(n-1)
=>bn=2^(n-2) (n>=2)
b1=4 bn=2^(n-2) (n>=2)

(1).由已知:a3=a1+2d=5,S3=a1+a2+a3=2a1+d+5=9,即2a1+d=4,上述两式联立可得:a1=1,d=2.所以:an=a1+(n-1)d=1+(n-1)*2=2n-1.Sn=(a1+an)n/2=(1+2n-1)n/2=n^2.
(2).由题意,n=1时,a1b1=5+(2*1-3)2^(0)=5+(-1)=4,b1=4/a1=4;
a1b1+a2b2+……+anbn=5+(2n-3)2^(n-1),
a1b1+a2b2+……+an-1bn-1=5+(2n-5)2^(n-2),【注:n=n-1时】
上述两式相减得:anbn=(2n-3)2^(n-1)-(2n-5)2^(n-2)=(2n-1)2^(n-2).
而an=2n-1,可见bn=2^(n-2),而b1=4不符合上式,所以bn是一个除首项外,以第二项b2=1为首项,2为公比的等比数列.其前n项和:
An=b1+b2+...+bn=4+1+2+2^2+...+2^(n-2)=4+(1-2^(n-1))/(1-2)=2^(n-1)+3.