已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且AnBn=7n+45n+3,则使得anbn为整数的正整数n的个数是( )A. 2B. 3C. 4D. 5
问题描述:
已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且
=An Bn
,则使得7n+45 n+3
为整数的正整数n的个数是( )an bn
A. 2
B. 3
C. 4
D. 5
答
由等差数列的性质和求和公式可得:
=an bn
=2an
2bn
=
a1+a2n−1
b1+b2n−1
(2n−1)(a1+a2n−1) 2
(2n−1)(b1+b2n−1) 2
=
=A2n−1 B2n−1
=7+7(2n−1)+45 (2n−1)+3
,12 n+1
验证知,当n=1,2,3,5,11时
为整数.an bn
故选:D
答案解析:由等差数列的性质和求和公式,将通项之比转化为前n项和之比,验证可得.
考试点:等差数列的性质.
知识点:本题考查等差数列的通项公式和前n项和公式及性质的应用,属基础题.