已知{an}是等比数列,a1=2,a3=18;{bn}是等差数列,b1=2,b1+b2+b3+b4=a1+a2+a3>20.(1)求数列{bn}的通项公式;(2)求数列{bn}的前n项和Sn的公式;(3)设Pn=b1+b4+b7+…+b3n-2,Qn=b10+b12+b14+…+b2n+8,其中n=1,2,…,试比较Pn与Qn的大小,并证明你的结论.

问题描述:

已知{an}是等比数列,a1=2,a3=18;{bn}是等差数列,b1=2,b1+b2+b3+b4=a1+a2+a3>20.
(1)求数列{bn}的通项公式;
(2)求数列{bn}的前n项和Sn的公式;
(3)设Pn=b1+b4+b7+…+b3n-2,Qn=b10+b12+b14+…+b2n+8,其中n=1,2,…,试比较Pn与Qn的大小,并证明你的结论.

(1)设{an}的公比为q,由a3=a1q2得q2=a3a1=9,q=±3.当q=-3时,a1+a2+a3=2-6+18=14<20,这与a1+a2+a3>20矛盾,故舍去.当q=3时,a1+a2+a3=2+6+18=26>20,故符合题意.设数列{bn}的公差为d,由b1+b2+b3+b4=26得4...
答案解析:(1)将已知转化成基本量,先有{an}的条件求出公比q2=

a3
a1
,要注意讨论q的值的情况,再由等差数列{bn}满足b1+b2+b3+b4=26进而求出d,得到bn
(2)利用等差数列的前n项和公式可得结果;
(3)由已知可得b1,b4,b7,b3n-2组成以b1=2为首项,3d为公差的等差数列,而b10,b12,b14,b2n+8组成以b10=29为首项,2d为公差的等差数列,求出Pn和Qn后,作差比较,得到关于n的函数关系式,讨论n的情况可得结果.
考试点:数列递推式;不等式比较大小;数列的求和.

知识点:本题考查等差数列、等比数列等基本知识,属于基础题目,考查逻辑思维能力、分析问题和解决问题的能力.