已知等差数列{an}的前n项和Sn,且bn=Snn(n∈N*),求证:数列{bn}是等差数列.
问题描述:
已知等差数列{an}的前n项和Sn,且bn=
(n∈N*),求证:数列{bn}是等差数列. Sn n
答
证明:设等差数列{an}的首项为a1,公差为d,
则Sn=na1+
.n(n−1)d 2
bn=
=a1+Sn n
d.n−1 2
则bn+1−bn=a1+
d−a1−n 2
d=n−1 2
.d 2
∴数列{bn}是等差数列.