已知等差数列{an}的前n项和Sn,且bn=Snn(n∈N*),求证:数列{bn}是等差数列.

问题描述:

已知等差数列{an}的前n项和Sn,且bn=

Sn
n
(n∈N*),求证:数列{bn}是等差数列.

证明:设等差数列{an}的首项为a1,公差为d,
则Sn=na1+

n(n−1)d
2

bn
Sn
n
a1+
n−1
2
d

bn+1bna1+
n
2
d−a1
n−1
2
d=
d
2

∴数列{bn}是等差数列.