已知函数F(X)=SIN(派-X)SIN(派/2-X)+COSX的平方,(1)求最小周期; (2)X属于[-派/8,3派/8]时,求f(x)
问题描述:
已知函数F(X)=SIN(派-X)SIN(派/2-X)+COSX的平方,(1)求最小周期; (2)X属于[-派/8,3派/8]时,求f(x)
答
难为你打出来了
答
1)解析:∵f(x)=sin(π-x)*sin(π/2-x)+cos(x)
=1/2sin2x+cos(x)
其最小正周期为2π (取二函数周期的最小公倍数)
(2)解析:f(x)=1/2sin2x+cos(x)
令f’(x)=cos2x-sin(x)=1-2(sinx)^2-sinx=0
Sinx=-1,sinx=1/2
∴x1=2kπ-π/2,x2=2kπ+π/6,x3=2kπ/2+5π/6
f(x)在x1处不是极值点,在x2处取极大值,在x3处取极小值
∵x∈[-π/8,3π/8]
当x∈[-π/8,π/6],f(x)单调增;当x∈[π/6,3π/8],f(x)单调减;赞同0| 评论
答
先化简 f(x)=sin(π-x)sin(π/2-x)+cos²x=1/2sin2x+cos²x=12/sin2x+(1+2cos2x)/2=1/2sin2x+1/2cos2x+1/2=√2/2sin(2x+π/4)+1/2(1) T=2π/2=π(2) X∈(-π/8,3π/8) 0
答
f(x)=二分之根二sin(2x+派/4)+0.5 T=派 当X属于[-派/8,3派/8]时,f(x)属于[0,二分之根二]