已知O为原点,A、B为抛物线y^2=2x上两点,并且OA⊥OB,求S△OAB的最小值.

问题描述:

已知O为原点,A、B为抛物线y^2=2x上两点,并且OA⊥OB,求S△OAB的最小值.

S△OAB的最小值=4.

4
设AB的方程x=my+n联立抛物线与直线
消去x,得
y^2—2my—2n=0
设AB坐标为(x1,Y1)(x2,y2)
x1x2+Y1y2=0 y^2=2x 解得 n=2
Y1y2的差的绝对值=根号下代尔塔/a的绝对值=2根号下m^2+4
S△OAB=1/2*Y1y2的差的绝对值*2=2根号下m^2+4
smin=4

这个简单,
设直线OA为y=kx,(k>0);设直线OB为y=(-1/k)x.(∵OA⊥OB)
直线OA与抛物线y^2=2x交于O,A两点,将y=kx代入y^2=2x得x=0或x=2/(k^2),由直线OA方程得A点为(2/(k^2),2/k).
同上,直线OB与抛物线交于O,B两点,将y=(-1/k)x代入y^2=2x得x=0或x=2k^2,由直线OB方程得B点为(2k^2,-2k).
|OA|=√{[2/(k^2)]^2+[2/k]^2}=(2/k)·√[(1/k^2)+1],
|OB|=√{[2k^2]^2+[-2k]^2}=(2k)·√[k^2+1],
于是
S△OAB=(1/2)·|OA|·|OB|
=2·√{[(1/k^2)+1]·[k^2+1]}
=2·√[k^2+1/(k^2)+2]
=2·√{[k+(1/k)]^2}
=2·[k+(1/k)]≥4,当且仅当k=1/k时,即k=1时取等号.
综上,S△OAB最小值为4.

设出A、B点(只需两个未知数),通过OA、OB垂直关系建立两未知数方程,从而得到两未知数之间的关系,保留一个未知数,再解除AB与X轴的焦点,S△OAB就是焦点的横坐标乘上A、B两点纵坐标的差值的绝对值,因此就建立了一元一次方程,即可解除最值了。