函数f(x)=1/3x3+1/2ax2+bx在区间[-1,1),(1,3]内各有一个极值点 求a2-4b的最大值
问题描述:
函数f(x)=1/3x3+1/2ax2+bx在区间[-1,1),(1,3]内各有一个极值点 求a2-4b的最大值
答
最大值为2(其中x^y表示x的y次方)因为f(x)=1/3x3+1/2ax2+bx在区间[-1,1),(1,3]内各有一个极值点,因为极值点处导数为0,所以f(x)的导函数f'(x)=x^2+ax+b的两个根分别在区间[-1,1),(1,3],由求根公式,两根分别为[-a+(a^...