在三角形ABC中,求证:sin^A/2+sin^B/2+sin^C/2=1-2sinA/2sinB/2sinC/2

问题描述:

在三角形ABC中,求证:sin^A/2+sin^B/2+sin^C/2=1-2sinA/2sinB/2sinC/2

2sinA/2sinB/2 = cos(A-B)/2 - cos(A+B)/2 = cos(A-B)/2 - sinC/2
右 = 1 - 2sinA/2sinB/2sinC/2 = 1 - ( cos(A-B)/2 - sinC/2 ) sinC/2
= 1 - cos(A-B)/2 * cos(A+B)/2 + (sinC/2)^2
= 1 - (1/2) (cosA+cosB) + (1-cosC)/2
= sin^A/2+sin^B/2+sin^C/2 = 左边
注:在三角形ABC中, (A+B+C)/2 = 90° =》cos(A+B)/2 = sinC/2

sin^A/2 看不懂
还有后面的相乘的式子能写的没有歧义吗?

你的表述出现了一些问题,我想应该是求证:[sin(A/2)]^2+[sin(B/2)]^2+[sin(C/2)]^2=1-2sin(A/2)sin(B/2)sin(C/2)若是这样,则方法如下:在三角形中,有恒等式:cosA+cosB+cosC=1+4sin(A/2...