如图,在梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,E为AB中点,EF∥DC交BC于点F,求EF的长.
问题描述:
如图,在梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,E为AB中点,EF∥DC交BC于点F,求EF的长.
答
解法一:如图1,过点D作DG⊥BC于点G.∵AD∥BC,∠B=90°,∴∠A=90度.可得四边形ABGD为矩形.∴BG=AD=1,AB=DG.∵BC=4,∴GC=3.∵∠DGC=90°,∠C=45°,∴∠CDG=45度.∴DG=GC=3.∴AB=3.又∵E为AB中点,∴BE=...
答案解析:可过点D作DG⊥BC于点G,解直角三角形DGC,求出DG=AB的长,进一步求出BE,再解直角三角形BEF,再解这个三角形即可;或延长FE交DA的延长线于点G,证明四边形DGFC是平行四边形,再证明△AGE≌△BFE,说明AG=BF,最后解依据DG=FC得出的一元一次方程即可.
考试点:梯形;解直角三角形.
知识点:此题考查简单图形中的线段的求法,一可以通过特殊角的三角函数值及四边形的有关知识及勾股定理求解;二可以通过特殊四边形的性质,借助全等三角形有关知识建立方程求解.