对于任意正整数n,代数式n(n+5)

问题描述:

对于任意正整数n,代数式n(n+5)

都大于等于6

原题目:
对于任意正整数n,代数式n(n+5)-(n+2)(n-3)的值是否总能被6整除?请说明理由
证明:
n(n+5)-(n+2)(n-3)
=n^2+5n-(n^2-n-6)
=6n+6
=6(n+1)
所以,对于任意正整数n,代数式n(n+5)-(n+2)(n-3)的值总能被6整除