设角=35/6兀,则2sin(兀+a)cos(兀-a)-cos(兀+a)/1+sin^2a+sin(兀-a)-cos^2(兀+a)值=

问题描述:

设角=35/6兀,则2sin(兀+a)cos(兀-a)-cos(兀+a)/1+sin^2a+sin(兀-a)-cos^2(兀+a)值=

a=35π/6 ->a=-π/6
(2sin(π+a)cos(π-a)-cos(π+a))/(1+sin^2a+sin(π-a)-cos^2(π+a))
=(2sinacosa+cosa)/(1+sin^2a+sina-cos^2a)
=((2sina+1)cosa)/(2sin^2a+sina)
=((2sina+1)cosa)/((2sina+1)sina)
=cota=cot(-π/6)=-√3

a=35π/6a=6π-π/6a=-π/62sin(π+a)cos(π-a)-cos(π+a)/[1+sin^2a+sin(π-a)-cos^2(π+a)]=2sin(π-π/6)cos(π+π/6)-cos(π-π/6)/[1+sin^2(-π/6)+sin(π+π/6)-cos^2(π-π/6)]=2sinπ/6(-cosπ/6)-(-cosπ/6...