(1)设AB是过椭圆x*2/a*2+y*2/b*2=1(a>b>0)中心的弦,椭圆的左焦点为F1(-c,0),则ΔF(1)设AB是过椭圆x*2/a*2+y*2/b*2=1(a>b>0)中心的弦,椭圆的左焦点为F1(-c,0),则ΔF1AB的面积最大为——————

问题描述:

(1)设AB是过椭圆x*2/a*2+y*2/b*2=1(a>b>0)中心的弦,椭圆的左焦点为F1(-c,0),则ΔF
(1)设AB是过椭圆x*2/a*2+y*2/b*2=1(a>b>0)中心的弦,椭圆的左焦点为F1(-c,0),则ΔF1AB的面积最大为——————

bc
证明:过原点的直线斜率不存在的时候,三角形面积为bc,斜率存在时设为k,两个交点坐标设为A(x1,y1)B(x2,y2),直线方程y=kx带入椭圆方程得(a²k²+b²)x²-a²b²=0,
x1+x2=0,x1x2=-a²b²/(a²k²+b²),y1+y2=0 y1y2=-k²a²b²/(a²k²+b²),
三角形面积=0.5c|y1-y2|=0.5√(4k²a²b²/(a²k²+b²))=√[k²a²b²/(a²k²+b²)]
=b√[1/(1+b²/a²k²)],k²越大,面积越大,k不存在时面积最大为bc.