设A+B+C=派,若sinA,sinB,sinC成等差数列,求证tanA/2×tanB/2=1/3

问题描述:

设A+B+C=派,若sinA,sinB,sinC成等差数列,求证tanA/2×tanB/2=1/3

sinA,sinC,sinB成等差数列
sinA+sinB=2sinC,
利用和差化积公式:2sin[(A+B)/2]cos(A-B)/2]= 4sin(C/2)cos(C/2)(1)
利用诱导公式 :COS(C/2)=2sin[(A+B)/2]
所以(1)可化为:cos(A-B)/2= 2sin(C/2)=2cos(A+B)/2
所以cos(A/2)cos(B/2)+sin(A/2)sin(B/2) =2cos(A/2)cos(B/2)-2sin(A/2)sin(B/2)
所以cos(A/2)cos(B/2)=3sin(A/2)sin(B/2)
所以tanA/2×tanB/2=sin(A/2)/cos(A/2)*sin(B/2)/cos(B/2)=1/3