在△ABC中,若sinA*cos^2(C/2)+sinC*cos^2(A/2)=3/2sinB1.求证:三边a,b,c成等差数列2.求∠B的取值范围3.求函数y=cos2B/(sinB+cosB)的取值范围

问题描述:

在△ABC中,若sinA*cos^2(C/2)+sinC*cos^2(A/2)=3/2sinB
1.求证:三边a,b,c成等差数列
2.求∠B的取值范围
3.求函数y=cos2B/(sinB+cosB)的取值范围

在△ABC中,若sinA*cos^2(C/2)+sinC*cos^2(A/2)=3/2sinB
1.求证:三边a,b,c成等差数列
2.求∠B的取值范围
3.求函数y=cos2B/(sinB+cosB)的取值范围
(1)证明:∵在△ABC中, sinA*cos^2(C/2)+sinC*cos^2(A/2)=3/2sinB
sinA*(cosC+1)/2+sinC*(cosA+1)/2=3/2sinB
sinA*(cosC+1)+sinC*(cosA+1)=3sinB
sin(A+C)+sinA+sinC=3sinB
sinA+sinC=2sinB
∴a+c=2b
∴三边a,b,c成等差数列
(2)解析:∵三边a,b,c成等差数列,其公差为d
由余弦定理得cosB=(a^2+C^2-b^2)/(2ac)=(b^2+2d^2)/(2b^2-2d^2)
当cosB∴0当cosB=1时,b^2+2d^2= 2b^2-2d^2==>d^2=b^2/4==>0d=b/2==>cosB=1==>B=90°
d=0==>cosB=1/2==>B=60°
∴60°(3)解析:∵函数y=cos2B/(sinB+cosB)=cosB-sinB=√2cos(B+π/4)
B=60°==>y=√2cos(7π/12)=-√2cos(5π/12)= (1-√3)/2
B=90°==>y=√2cos(3π/4)=-√2cos(π/4)=-1
∴-1

sinA*cos^2(C/2)+sinC*cos^2(A/2)=sinA*cosC/2+sinC*cosA/2+sinA/2+sinC/2
=sin(A+C)/2+sinA/2+sinC/2=sinB/2+sinA/2+sinC/2=3/2sinB
a/sinA=b/sinB=c/sinC=t
上式b/(2t)+a/(2t)+c/(2t)=3b/(2t) a+c=2b 所以三边a,b,c成等差数列
a+m=b=c-m
cosB=(a^2+C^2-b^2)/(2ac)=(b^2+2m^2)/(2b^2-2m^2)
m=0 cosB=1/2 B=60 120 范围(60-120)
y= cos2B/(sinB+cosB)=cosB-sinB= (-√2/2)sin(B-45)
sin(B-45)min=sin15
sin(B-45)max=sin75
y=((1-√3)/2,(-1-√3)/2)

第一个问题:∵sinA[cos(C/2)]^2+sinC[cos(A/2)]^2=(3/2)sinB,∴2sinA[cos(C/2)]^2+2sinC[cos(A/2)]^2=3sinB,∴sinA(1+cosC)+sinC(1+sinA)=3sinB,∴sinA+sinC+sinAcosC+cosAsinC=...