数列an,bn各项均为正数,对任意n,an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列证数列根号BN成等差数列

问题描述:

数列an,bn各项均为正数,对任意n,an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列证数列根号BN成等差数列

an,bn,an+1成等差数列
2bn=an+a(n+1)
bn,an+1,bn+1成等比数列
[a(n+1)]^2=bn*b(n+1)
根据上述2式得
2bn=根号(b(n-1)*bn)+根号(bnb(n+1))
两边同时除以根号bn
2根号bn=根号b(n-1)+根号b(n+1)
所以根号bn是等差数列