四边形ABCD中,E是AB的中点,F是BC的中点,连接AC,在AC上取G,H,使AG=GH=GC,求证:四边形ABCD是平行四边形
问题描述:
四边形ABCD中,E是AB的中点,F是BC的中点,连接AC,在AC上取G,H,使AG=GH=GC,求证:四边形ABCD是平行四边形
答
1).连接BG、BH.在三角形ABH中,E为AB的中点、G为AH的中点,得知EG为中位线,所以BH‖EG(即GD线);同理可证BG‖HD,故BGDH为平行四边形.在△AGD和△CHB中:GD=HB、AG=CH、∠AGD=∠GDH+∠DHG=∠BHF+∠FHC=∠CHB,所以△AGD...