证明:1+1/2+..+1/n>ln(n+1)+n/2(n+1)

问题描述:

证明:1+1/2+..+1/n>ln(n+1)+n/2(n+1)

解 设f(x)=1/x G(x)=ln(x+1)+x/2(x+1) =ln(x+1)+1/2-1/2(x+1) 其导数g(x)=1/(x+1)+1/2(x+1)^2 前式=f(x)的积分 其导数就是f(x) 同时g(x) f(x)皆大于o 题中二式皆递增 f(x)-g(...